

NFC smartcards in Python
wrapping libnfc for use with smartcards

Ondrej Mikle • ondrej.mikle@gmail.com • 16.12.2015

First API for APDU over NFC

● APDUs are „assembler for smartcards“
● only API for NFC smartcards in python
● all other projects aim at simpler cards

– Mifare Classic usually

● smartcards are much more interesting
– Desfire

– Yubikey Neo

– EMV (Visa, Mastercard)

Raspi with PN532 over SPI

Demo app - authenthicator

● waits for card to be in the reader's field
● reads UID

– looks at DB how this UID should
authenthicate

– either just UID or Yubikey's HMAC-SHA1

● if successful, wiringPi triggers a pin (lock)

Yubikey programming

Demo app - log

pi@raspberry1 ~/brmdoor_libnfc sudo python brmdoor_nfc_daemon.py
brmdoor_nfc.config

2015-12-04 17:05:16,305 INFO Unknown UID 80798c69
[brmdoor_nfc_daemon.py:128]
2015-12-04 17:05:23,782 INFO Unknown UID 80f02118
[brmdoor_nfc_daemon.py:128]
2015-12-04 17:05:29,130 INFO Unlocking for UID (uid: 22623733, nick:
UidMifare2) [brmdoor_nfc_daemon.py:116]
2015-12-04 17:05:38,711 INFO Unknown UID 805539bc
[brmdoor_nfc_daemon.py:128]
2015-12-04 17:05:45,117 INFO Unlocking after HMAC for UID (uid:
04372ED2A52E80, nick: YubikeyOld) [brmdoor_nfc_daemon.py:124]

Other demos

● see test_nfc.py
● reading NFC NDEF message
● HMAC-SHA1 on the Yubikey
● Visa read Track 2 Equivalent Data
● Mastercard execute and sign payment

How it's implemented

● „classic swig“ wrap of libnfc
– in C++ because we want exception

handling to propagate into Python

● APDUs were actually real pain to get
working as there was minimal
documentation

● nfc_smartcard.cpp has sending, receiving,
parsing APDU

Use in Python
from binascii import hexlify
from nfc_smartcard import NFCDevice, NFCError

hex_apdus = [# this asks for NDEF message stored on card (Yubikey/Desfire)
 "00 A4 04 00 07 D2760000850101", #select NDEF application
 "00 a4 00 0c 02 E104", # select NDEF message file 0xE104
 "00 b0 00 00 30"] # read up to 0x30 bytes from record

turn APDUs to binary
apdus = [hex_apdu.replace(" ","").decode("hex") for hex_apdu in hex_apdus]

nfc = NFCDevice()
uid = nfc.scanUID()
try:
 for apdu in apdus:
 rapdu = nfc.sendAPDU(apdu)
 print "Response SW %04x, data %s" % (rapdu.sw(), hexlify(rapdu.data()))
except NFCError, e:
 print "Failed to transmit APDU:", e.what()

nfc.close()
nfc.unload()

Project link

● https://github.com/hiviah/brmdoor_libnfc

Thanks

Ondrej Mikle • ondrej.mikle@gmail.com

